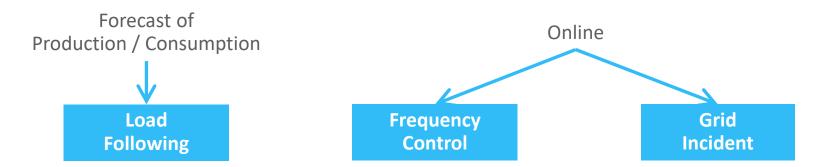
Flexible PWR

Flexibility of electricity production

G. Simonini, EDF, 18th September 2024

Funded by the European Union Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Atomic Energy Community ('EC-Euratom'). Neither the European Union nor the granting authority can be held responsible for them.

1. Introduction


2. French PWR Flexibility

3. SMR & Cogeneration

Summary

Electrical System Needs

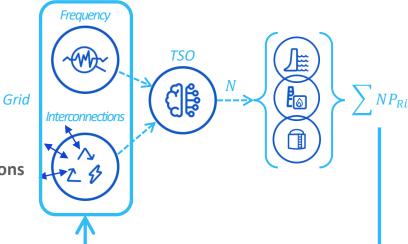
- Load profile (~24 hours) to be executed
- Can be modified (tertiary frequency control)

- Keep the frequency around its nominal value (50 Hz in EU)
- \rightarrow Requirement

- Resiliency
- Islanding
- Contribute to grid restoration

Frequency Control

Primary frequency control


- ightarrow fast stabilization of the frequency
- *k*∆*f* (2%PN)
- In less than 30 seconds
- At least for 15 minutes

Secondary frequency control

- \rightarrow restoration of nominal frequency and interconnections
- *NP_R* (5%PN)
- N can go from -1 to 1 in:
 - 800 seconds
 - Or 133 seconds in "emergency scenarii"

Tertiary frequency control

- \rightarrow restoration of secondary power reserve
- By modifying the load profile of some power units (e.g. start-up of additional units...)

Schematic view of the secondary frequency control principles

Principles of Power Control

• **<u>Power Control</u>** \rightarrow $P = P_0 + NP_R + k\Delta f$

- Target:
 - Mechanical Power \rightarrow Steam Admission Valves
 - Thermal Power (@ Steam Generator)
 - Nuclear Power

General principle:

- Final power type: electrical
- Deal with power transformation
- Deal with the process inertia
 - <u>Examples</u>:
 - Potential energy of water
 - Chemical energy of fossil fuels (coal...)
 - ...
- 5• **<u>Rotational inertia</u>** $\rightarrow J \frac{d\Omega}{dt} = C_M C_E$

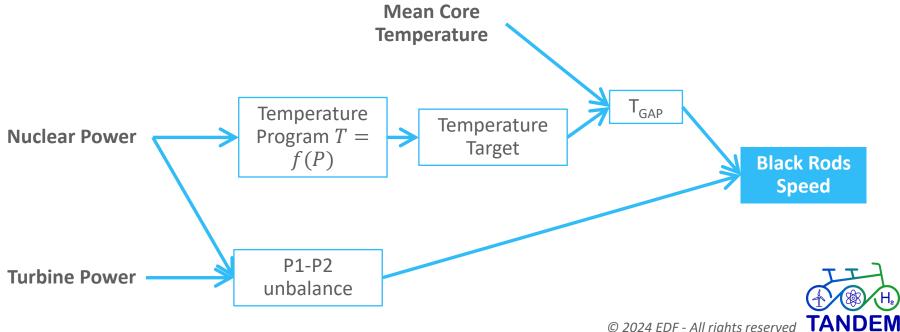
French PWR Flexibility

Principles of Core Control

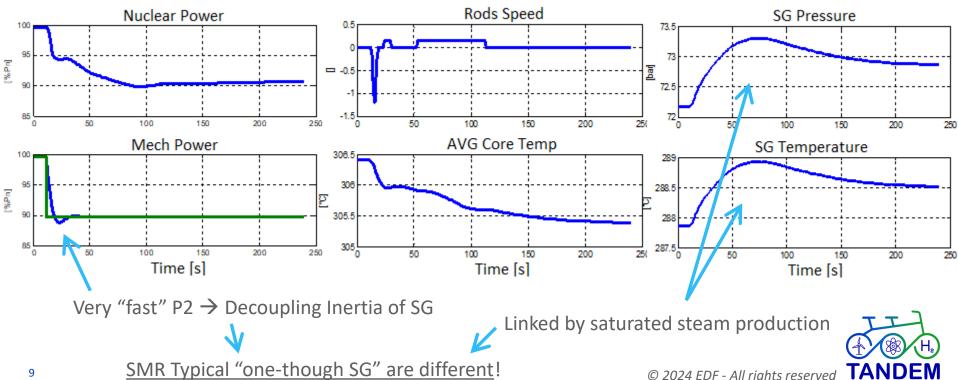
• Nuclear fission control means:

7

	Pros	Cons	
Boron	Homogeneous	Slow	
Rods	Fast (~1 m/min*)	Heterogeneous	
* In normal operation, not SCRAM			
	Grev Operating Mode	<u> </u>	


→ Grey Rods, with reduced absorption power, to quickly compensate the *Power Reactivity Feedback* with lower power distortion → Open-loop control

- Self-stabilizing reactivity feedbacks (Doppler, moderator effects)
 - \rightarrow Control the temperature, not the power



Principles of Temperature Control

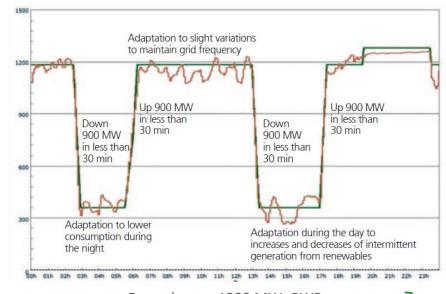
Simplified Regulation Scheme:

Transient Example \rightarrow 10% Power Drop

Safety Constraints

lssues:

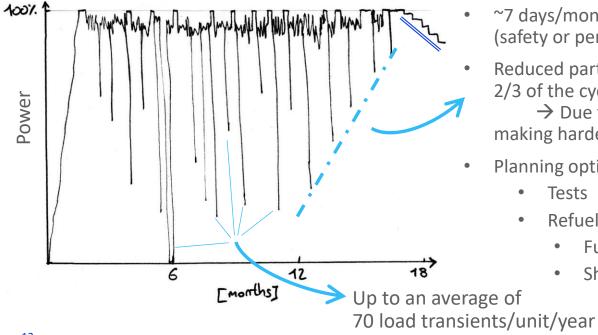
- Increased Reactivity Injection in case of Rod Ejection Accident
- Flux/power distortion due to rods insertion:
 - Local Hot Spots
 - Heterogeneous burnup → Hot Spots when rod is withdrawn, @ full load
 - \rightarrow Amplification due to ¹³⁵Xe
- Pellet-Clad Interaction (PCI):
 Clad stress due to different thermal dilatation of the fuel (↑) and the clad (↓)


Countermeasures:

- Limits on max rod insertions and reduced rod worth of Grey Rods
- Restrictive Operating Domain Axial Offset vs. Power
- Credits: max allowed duration @ partial load, restored spending time @ full load
- Limits on power ramp speed:
 - 3% of NP/hour after refueling
 - 5% of NP/min otherwise

Flexibility Capabilities of EDF Fleet [1/2]

- 80% ramps up/down in less than 30 minutes
- Twice a day (separation of 2 hours min)
- Superimposing primary & secondary frequency control
- 2 reactors out of 3 capable of flexibility



Example on a 1300 MW_e PWR. Courtesy of Morilhat et al. [ref 1]

Flexibility Capabilities of EDF Fleet [2/2]

Typical cycle (*artist's rendition*):

- ~1 month/cycle off for refueling/maintenance
- ~7 days/month @ 100% for tests (safety or performance related)
- Reduced partial load capacity starting from about 2/3 of the cycle.

 \rightarrow Due to decreasing boron concentration, making harder to compensate xenon by dilution

- Planning optimization:
 - Tests
 - Refueling:
 - Fuel saving
 - Shortening or Stretching-out

Other consequences on the "health" of the plant?

- Fatigue on the primary circuit (pressure, temperature variations)
 →Monitored by design: well under limits
- Wearing of <u>Control Rod Drive Mechanisms</u> because of greater usage
 → Counter: replacement when approaching the design limits (~millions of steps)
- Primary effluents:
 - Linked to more frequent boron dilutions/injections → retreated and reinjected, but need an efficient processing
 - Lower production of tritium and carbon-14, since they are linked to the produced energy
- Increase of solid wastes as ion-resins and filters because of the increased process of primary fluids
- **<u>Statistical studies</u>** demonstrated a very little impact on:
 - Wearing of Conventional Island components (leakages...)
 - Unavailability factor

SMR & Cogeneration

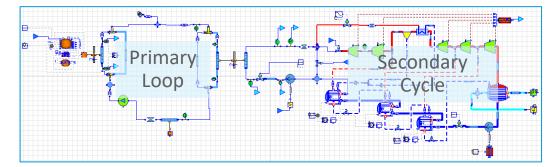
SMR general specificities

One-through Steam Generator:

- Far lower inertia \rightarrow strongly coupling primary and secondary system
- Superheated steam production → decoupled Pressure and Temperature
 →Both lead to a harder to control system

• No boron in normal operation:

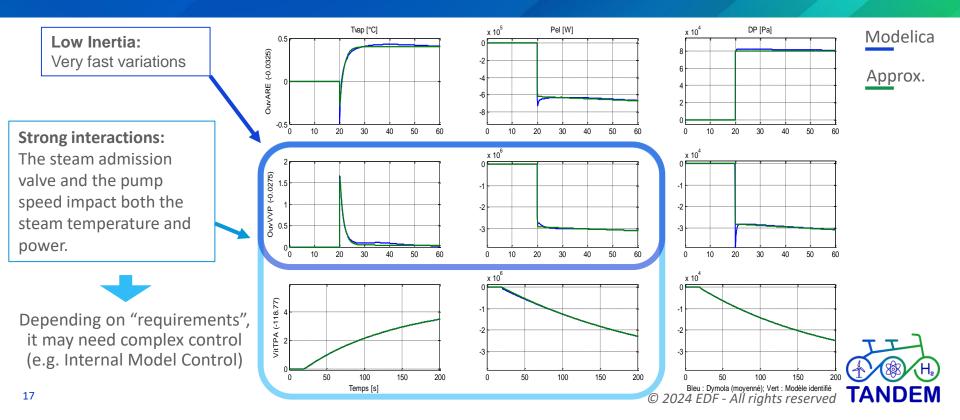
- Use of burnable poisons
- Increased usage of rods


 \rightarrow More flux/power heterogeneities

- Reduced core size:
 - Greater spatial correlation \rightarrow Lower flux oscillations (Xenon)

Control Design by 0D/1D modeling

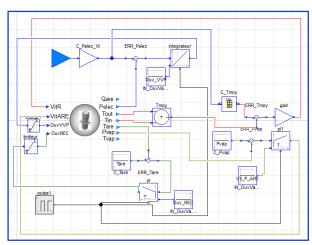
- Plant modeling based on reference data (whole operating range)
- 2. Model linearization (actuators effects on target variables)
- 3. Regulation design

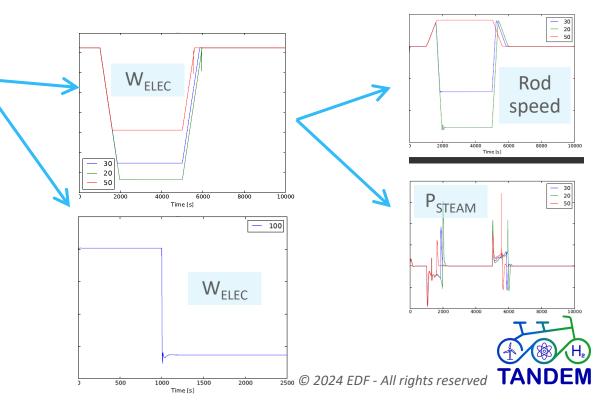


See Baligh&Bouskela, 2019 [<u>ref 3</u>]

Actuators	Targets	
Control rods, valves,	Power, primary temperature, steam	
pumps speed	pressure, SG inlet temperature	

Control Design: dynamic characterization




Control Design: transient studies

• Model with I&C

18

- Analysis of load transients:
 - Target variables evolution
 - Actuators behavior

Flexibility & Cogeneration

- → Production of both electricity and heat (at different P,T conditions)
- New load transients to be respected (electrical grid + heat clients)
- Potential synergies between the "outlets":
 - Variations may partially compensate
 - Variations of one product are less important on the whole capability
 - The thermal outlet may be used as damper
- → Interest of a Thermal Energy Storage system See, for example, <u>ref 4</u>
- → R&D Topic
- → Modelica TANDEM Library [<u>ref 5&6</u>]

Main Takeaways

<u>PWR</u> can be used as <u>dispatchable</u> Power Units in partnership with variable Renewable Sources to constitute a <u>Carbon-Free Energy Mix</u>

- Thanks to the <u>Grey Operating Mode</u> (or "T mode" of the EPR) \rightarrow Quick power ramps
- R&D work on <u>Aid Tools</u>, to especially deal with the Xenon poisoning

<u>SMR</u> \rightarrow Lower inertia, superheated steam: different control strategies

<u>Cogeneration</u> \rightarrow new perspectives for flexibility

OD/1D modeling is a valuable tool to help design flexible *Hybrid Energy Systems*

- 1. Morilhat, P., Feutry, S., Lemaitre, C., Favennec, J.-M. (2019). Nuclear power plant flexibility at EDF. VGB PowerTech, 99(5), 32-41.
- 2. Kerkar, N., Paulin, P. « Exploitation des cœurs REP », EDP Sciences, 2008.
- 3. El Hefni, Baligh, et Daniel Bouskela. *Modeling and Simulation of Thermal Power Plants with ThermoSysPro: A Theoretical Introduction and a Practical Guide*. Cham: Springer International Publishing, 2019.
- 4. Masotti, G. C., et al., "Simulation of flexible Small Modular Reactor operation with a thermal energy storage system," International Conference on SMR and their Applications, 2024.
- 5. Modelica TANDEM Library, https://gitlab.pam-retd.fr/tandem/tandem
- 6. SIMONINI, G., et al., "Modelica models description for the 'TANDEM' library," 2024. [Online]. Available: https://tandemproject.eu/resources/

TANDEM Partners

European Commission

DE RADIOPROTECTION

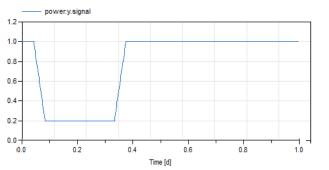
ET DE SÛRETÉ NUCLÉAIRE

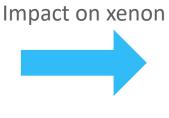
Get in touch for more information:

giorgio.simonini@edf.fr

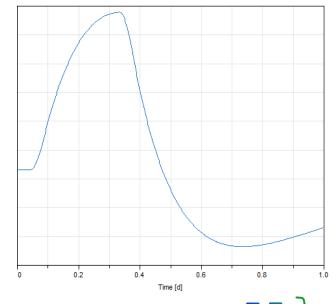
24

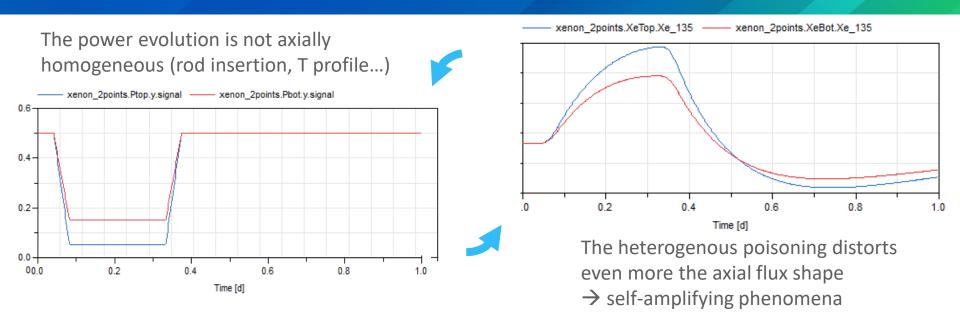
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or he European Atomic Energy Community ('EC-Euratom'). Neither the European Union nor the granting authority can be held responsible for them.




A fission product with strong impact on core operation

Xenon poisoning


Example of Load Following


- \rightarrow Positive feedback + oscillations
- → The phenomena last well beyond the end of the original transient
- → It needs compensations by control means (usually, by boron dilution and injection)

— xenon_2points.XeTot.y.signal

IAND

Axial Unbalance

Compensation by control means \rightarrow rods insertion/withdrawal

Complex phenomena + operating diagram to be respected \rightarrow aids tools (R&D on simulators, AI tools...) © 2024 EDF - All rights reserved

