

2nd International Summer School on Early-deployable SMRs, Lario Lake, Lecco, Italy, 24 June 2024

Advances in Technology Developments of Small Modular Reactors including Microreactors Prospects and Challenges

Prepared by: Dr. M. Hadid Subki

Technical Lead, SMR Technology Development Nuclear Power Technology Development Section Division of Nuclear Power, IAEA Department of Nuclear Energy Email: <u>SMR@IAEA.ORG</u> Presented by:

Prof. Marco E. Ricotti, PhD, Ing. *Chairperson, IAEA's TWG-SMR* Department of Energy, CeSNEF-Nuclear Politecnico di Milano, ITALY

Driving Factors & Opportunities for SMRs

SMR: Categorization and First 10 Years of Deployment

SMR: Major Technology Lines

Marine-based SMRs, Microreactors and MSRs

Advantages, Issues & Challenges

Issues and Actions for Deployments

DG IAEA Statement to the 67-th Regular Session of the IAEA GeneralConference25.09.2023

Nuclear power capacity will need to grow significantly if the world is to meet its <u>climate goals</u>.

Part of that growth could come from <u>Small Modular Reactors (SMRs)</u>.

The <u>IAEA Platform on SMRs and their Applications</u> provides Member States with enhanced Agency support on this important emerging technology whose modular design allows for a more gradual scaling up of power capacity making SMRs especially relevant for <u>developing countries</u>.

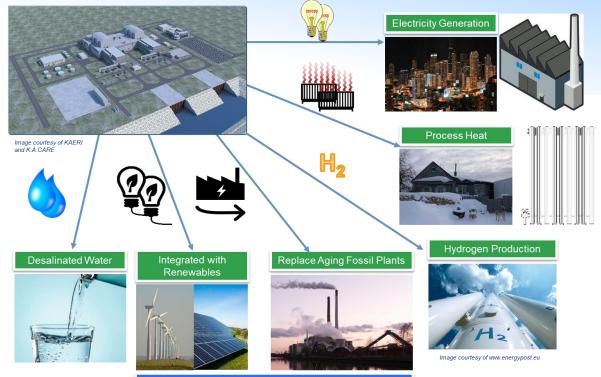
To further support the global deployment of safe and secure advanced reactors such as SMRs, <u>I launched the Nuclear Harmonization and Standardization</u> <u>Initiative (NHSI)</u>. It works towards enhancing the harmonization of regulatory approaches and also the wider standardization of industrial approaches. I am pleased to report that, since we started work a year ago, progress has been made on the two tracks of this key initiative, including the recent publishing of a white paper outlining why serially manufactured industrial products are crucial for the reliable deployment of SMRs.

Driving Factors & Opportunities for SMRs

Cost Affordability

Small Power, Innovation, Standardization

Short Construction Span

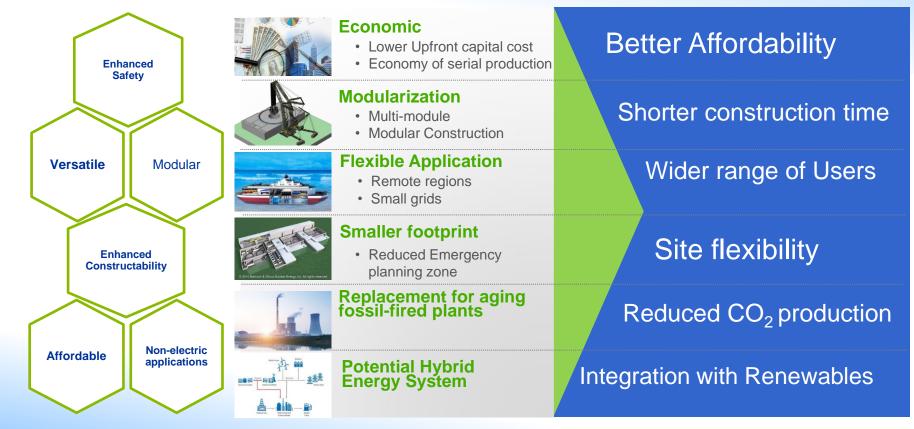

Design Simplification, Modularization

Energy Resilience

Flexibility and ensured energy supply

Energy Sustainability

Hybrid with Renewables, Replace Retiring Fossil Plants



A viable option to contribute to Climate Change Mitigation

Typically up to 300 MWe, High Degree of Modularity, Option to Energy Supply in Countries with Smaller Grids; Contribute to Climate Change Mitigation

Development Objectives of Small Modular Reactors

How SMRs answer the challenges?

Some Key Challenges for SMRs

First-of-a-Kind Technology Risks

Time and cost of getting to market and/or proven technology

Newcomers need Reference Plant

National programmatic cost for newcomers vs project cost for the unit

Regulatory preparedness to license FOAK and/or advanced designs

Prediction of the level of demand, generating cost versus alternative (\$)

Which funding and financing models?

Key Drivers for SMRs

Shorter construction period (\$)

Design simplification thru standardization

Modularization, factory construction and enhanced transportability

Lower upfront capital cost (\$)

Smaller site footprint

Scalability through multi-module (\$)

Non-Electric Apps, grid suitability and flexible operation

Deployment and Development Status in Brief (1/3) In operation

Floating NPP "Akademik Lomonosov"

- Russian Federation
- 2 units of KLT-40S (PWR), 35 MW(e) per unit
- Commercial operation started May 2020, first fuel cycle completed

HTR-PM

• China

- 2 units of high temperature gas cooled reactor pebbled-bed module, 200 MW(e) generated from single Turbine Island
- Operation started in 2023

ACP100

- China
- Integral PWR, 125 MW(e)
- Operation expected in 2026

BREST-OD-300

- Russian Federation
- Lead-cooled fast reactor, 300 MW(e)
- Operation expected in 2026

CAREM

- Argentina
- Integral PWR, 32 MW(e)
- Operation expected in 2030s

Deployment and Development Status in Brief (2/3)

Advanced stage of licensing

RITM-200N

- Russian Federation
- Integral PWR, 55 MW(e)
- License permit for construction received in Apri 2023
- Commissioning expected in 2028

VOYGR

- United States of America
- Integral PWR, 77 MW(e) per unit
- <u>Certified by the NRC in January 2023</u>
- Submitted construction application in August 2023

NATRIUM™

- United States of America
- Sodium fast reactor coupled with a molten salt-based integrated energy storage system, 345 MW(e)
- Pre-application activities interactions with NRC
- Submitted construction application in March 2024

BWRX-300

- United States of America
- Boiling water reactor, 290 MW(e)
- Construction permit expected to be received by the end of 2024
- Commissioning expected in 2029

HERMES

- United States of America
- Molten salt reactor with TRISO fuel, 35 MW(t)
- <u>Construction permit approved by the NRC in December 2023</u>
- Commissioning expected in 2026

Deployment and Development Status in Brief (3/3)

The Call France 2030 has fostered the AMR activity

© STELLARIA

22

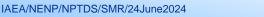
otrera

- Several different Gen4 technologies are being considered:
 - LFR (Newcleo, Sparta)
 - SFR (Hexana, Otrera,)
 - MSR (Naarea, Stellaria)
 - HTR (Jimmy, Blue Capsule)

SPARTA

 Some SU are reaching considerable team size and are investing in the supply chain (M&A; collaborations)

(HEXANA)


More and more SU are targeting markets beyond electricity

BLUE

CAPSULE

RENAISSANCE

Jimmy

<u>cea</u>

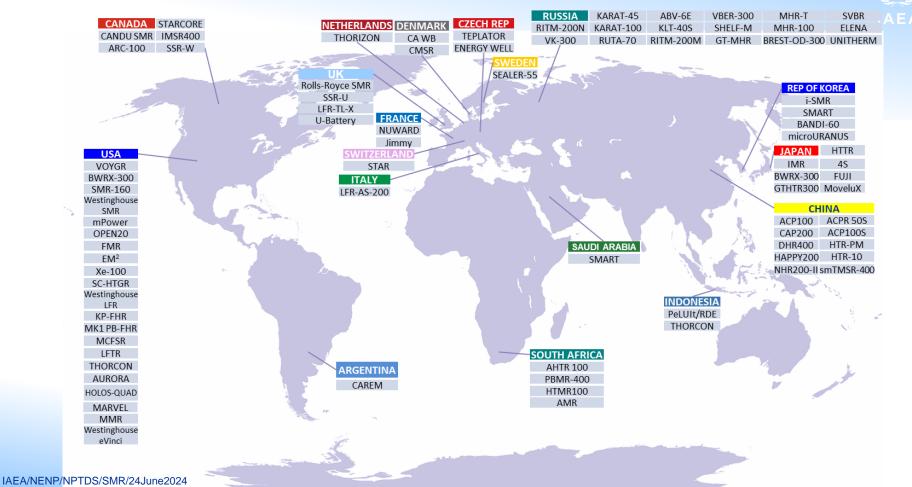
IAEA ARIS SMR Booklet 2022

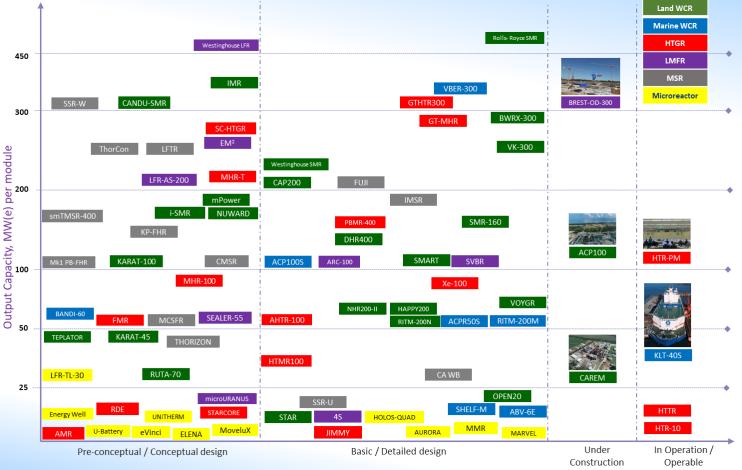
Advances in Small Modular Reactor Technology Developments

A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2022 Edition

IAEA SMR Booklet, 2022 Edition			
Number of reactor designs:	83		
Member states involved:	18		
Reactor types	 1.1. Water-cooled Land Based – 25 1.2. Water-cooled Marine Based – 8 2. High temperature Gas-cooled – 17, including 3 HTGR-type test reactors 3. Liquid Metal-cooled Fast Neutron Spectrum – 8 4. Molten Salt – 13 5. Microreactors – 12 		
Distinguishing features	 New annexes on economic challenges, decommissioning, and experimental testing for design verification and validation Insightful annexes with various charts and tables 		
Status	Finished, submitted for publication.		
Downloadable version	Coming soon.		

The 2022 IAEA SMR ARIS Booklet is a biennial publication as a supplement to the IAEA Advanced Reactor Information System (ARIS) Database. It provides a brief yet comprehensive design description of 83 different reactor designs. The 2022 version is an updated version of the 2020 booklet. It includes 11 more designs and a more comprehensive set of annexes.

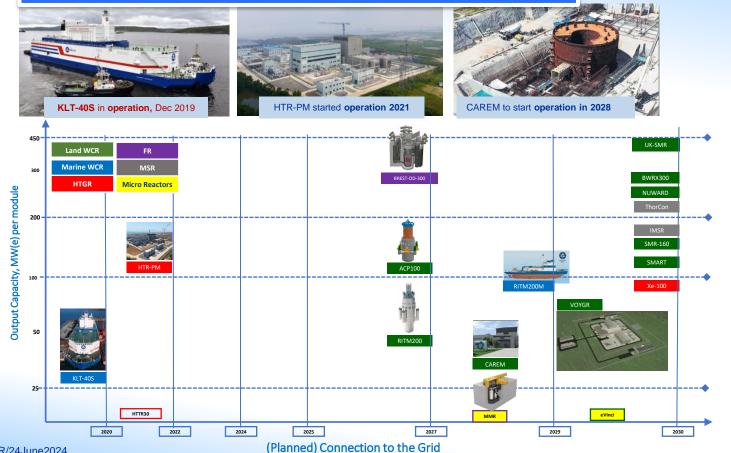

Growing Interest in SMRs


IAEA/NENP/NPTDS/SMR/24June2024

LFR 8 SFR 3

Global map of SMR Technology Development (2022)

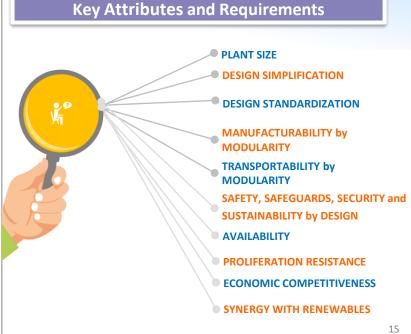
Stage of development or deployment of SMRs



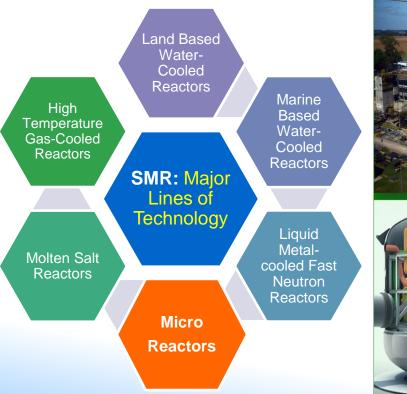
Stage of Design or Deployment

First 10-year Deployment Horizon

SMR Forerunners: 2 in operation, 4 in advanced stage of construction

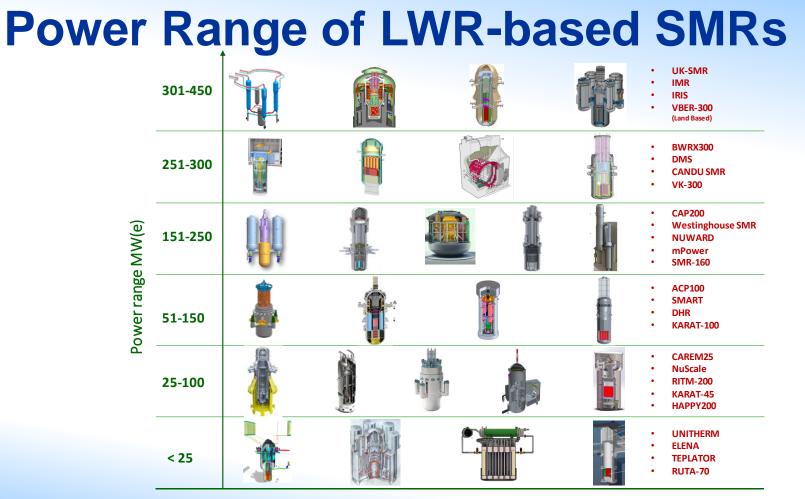

IAEA/NENP/NPTDS/SMR/24June2024

SMRs: Development Objectives & Attributes

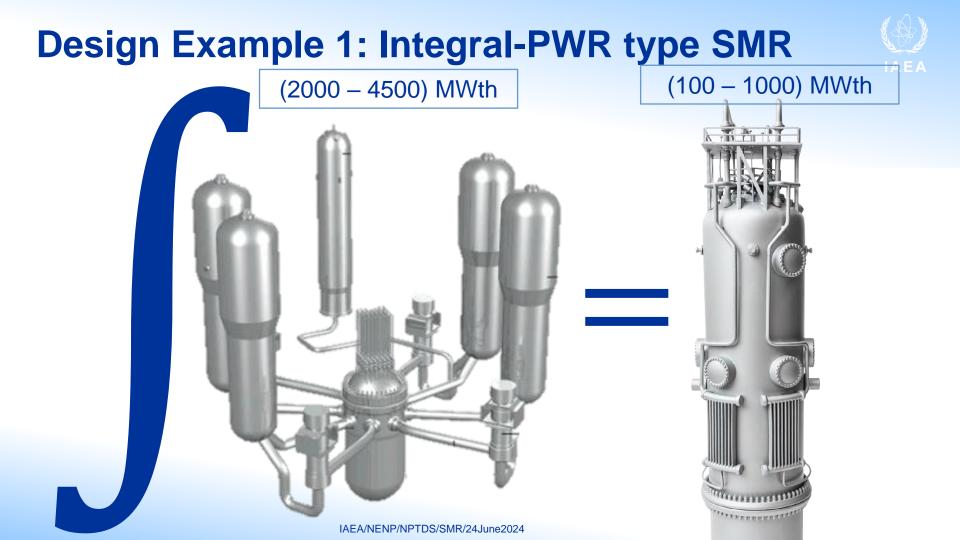

Developmental Objectives

- Smaller power, simplified design, deployed with high modularity
- Cost benefit, e.g., lower upfront capital cost and risk; economy of multiple
- Flexible to meet higher demand using multiplemodule power plants
- Various applications for electric and non-electric, including H₂ production
- Salient features comparing to Large NPPs
- A value proposition for enhancing social acceptance by public

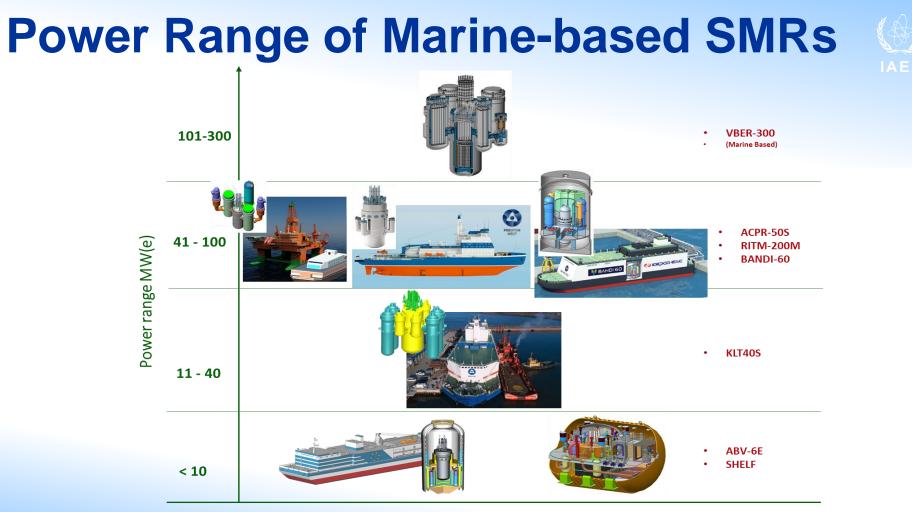
A categorization of SMR Technology



LWR-type SMRs (Examples)

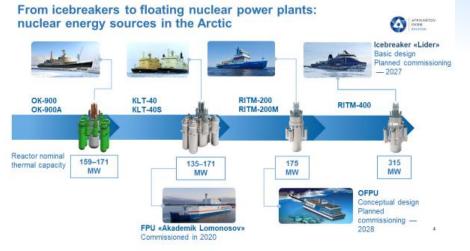


Land-based water-cooled reactors


18

iPWRs: Safety Advantages & Challenges

Advantages	Issues / Challenges
No large piping connected to RPV → No Large-LOCA	Increased numbers of small-bore piping connections to the RPV
Coolant Pumps connected to RPV → Reduced leakage probability	Structural strength of RPV and joints; mechanical vibration; flow stability
Internal Control Rod Drive Mechanism \rightarrow No CRD ejection accident	In-service inspection approach for in-vessel components
Wide use of Passive Safety Systems \rightarrow Independence of power source	Passive system has lower driving heads; ADS reliability is critical
Modularization and NSSS components integration \rightarrow compact reactor building	Larger and taller RPV to house NSSS components: steam generators, etc.



Marine-based water-cooled reactors

Marine-Based SMRs (Examples)

On-Shore [Deployment	Off-Shore Deployment		
KLT-40S	KLT-40S RITM-200M		SHELF	
		Fixed platform		
Design Status: Full Commercial Operation since May 2020 in the Akademik Lomonosov Floating NPP	Design Status: 6 prototype reactors were manufactured and installed on icebreakers (2 ones are in the process of testing)	Design Status: Completion of conceptual/ program design, preparation of project design.	<u>Design Status</u> : Detailed design underway	
 OKBM Afrikantov, Russian Federation Compact Loop PWR 150 MWt / 35 MWe per module x 2 modules for the FNPP Core Outlet Temp: 316°C Enrichment: 18.6% Refuel interval: 36 months Without onsite refuelling Spent fuel take back 	 OKBM Afrikantov, Russian Federation Integral-PWR 175 MWt / 50 MWe per module Core Outlet Temp: 318°C Enrichment: <20% Refuel interval: Up to 120 months Without onsite refuelling Spent fuel take back 	 CGNPC, China Integral-PWR 200 MWt / 50 MWe per module Core Outlet Temp: 321.8°C Enrichment: <5% Refuel interval: 30 months Whole heap refuelling 	 NIKIET, Russian Federation Integral-PWR 28.4 MWt / 6.6 MWe per module Core Outlet Temp: 310°C Enrichment: 19.7% Refuel interval: 6 years (8 for SHELF-M) Without onsite refuelling Spent fuel take back 	

FNPP R&D and deployment progress

1.1 ACPR SMR Technology

ACPR: Advanced Customer-friendly Practicable Reliable

ACPR50: 60MWe compact SMR NPP. Applied to onshore, mainly utilized for power generation, heating and desalination of sea water.

ACPR50S: 50MWe compact SMR FNPP. Applied to offshore, carried by fixed or floating platform utilized for power generation, heating and desalination

of sea water.

23

Market Potential of Marine-based SMRs

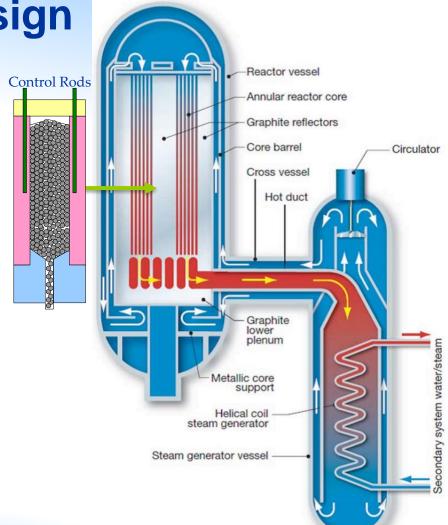
- East and South-East Asia
 - high seismicity and tsunami risk, high coastal population density, and limited domestic energy resources
- Middle East
 - Massive water desalination plants
- Africa and South America
 - small grids, high prices of electricity, water desalination, no incentives to develop large domestic nuclear infrastructure
- Russian Federation and northern Europe
 - Remote Arctic region power and heat supply, large mining operations, large offshore oil/gas operations

Global Activities on HTGR-SMR development

Under wide-range of development and deployment stages

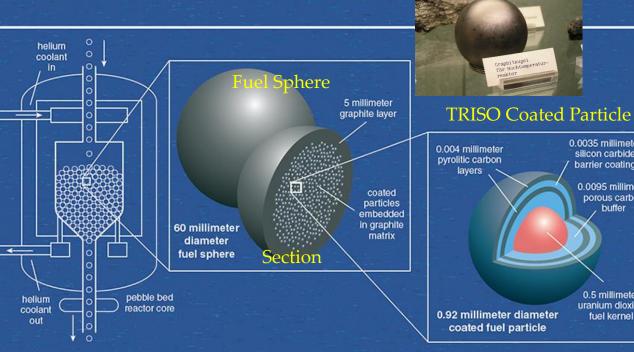
Key organizations with HTGR development

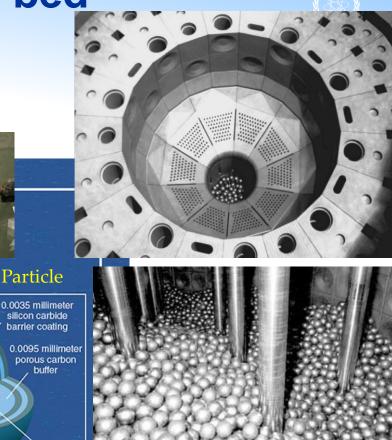
Industries and National Laboratories in 9 Member States


HTGR-type SMRs (Examples)

	7				
HTR-PM SC-HTGR (China) (France)		GTHTR300 (Japan)	PBMR-400 (South Africa)	Xe-100 (X Energy, United States)	
	STHERE &		Pimary Helium Blower Hot Gas Duct Vessel Inner pipe as hot gas duct inlet for neartor core Steam Generator Vessel	Control rods Pressure vessel Pebble bed Graphite side reflector Circulators Hot gas duct Helical coil tubes Feed water inier	
Design Status: Achieved first criticality on 13 Sept 2021 in Shidao Bay, planned grid connection by end of 2021	Design Status: Conceptual Design	Design Status: Pre-Licensing; Basic Design Completed	Design Status: Preliminary Design Completed, Test Facilities Demonstration	Design Status: Basic design development . Applied for VDR in July 2020. To submit design certification to the U.S. NRC in 2021 for construction in 20252026	
 INET Tsinghua University, China Modular pebble-Bed HTGR 250 MWt / 210 MWe x 2 modules Forced Circulation Core Outlet Temp: 750°C Enrichment: 8.5% Refuel interval: Online refuelling 	States, FrancePrismatic HTble-BedPrismatic-bloc HTGR<600 MWt / MWe10 MWe x 2625 MWt / 272 MWe per module<600 MWt / MWe10 MWe x 2Forced convection<000 C		 PBMR SOC, Ltd, South Africa Pebble-Bed HTGR Forced Circulation 400 MWt / 165 MWe per module Core Outlet Temp: 900°C Enrichment: 9.5% Refuel interval: Online refuelling 	 X Energy, LLC, United States of America Modular HTGR Forced Helium Circulation 200 MWt / 82.5 MWe Core Outlet Temp: 750°C Enrichment: 15.5% Refuel interval: Online refuelling 	

Pebble-bed Reactor design parameters


Example: HTR-PM Parameters

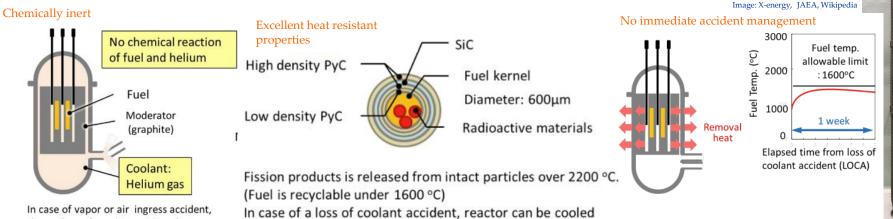

Core diameter, m3Core height, m13Primary helium pressure, MPa3Core outlet temperature, °C750Core inlet temperature, °C250			
Number of NSSS Modules2Core diameter, m3Core height, m13Primary helium pressure, MPa3Core outlet temperature, °C756Core inlet temperature, °C256Fuel enrichment, %8.5Steam pressure at turbine, Mpa13.25Steam temperature at turbine, °C566	Plant electrical power, MWe		
Core diameter, m3Core height, m1Primary helium pressure, MPa3Core outlet temperature, °C756Core inlet temperature, °C256Fuel enrichment, %8.5Steam pressure at turbine, Mpa13.25Steam temperature at turbine, °C566	Core thermal power, MW (one module)		
Core height, m1Primary helium pressure, MPa2Core outlet temperature, °C750Core inlet temperature, °C250Fuel enrichment, %8.5Steam pressure at turbine, Mpa13.25Steam temperature at turbine, °C560	Number of NSSS Modules	2	
Primary helium pressure, MPa2Core outlet temperature, °C750Core inlet temperature, °C250Fuel enrichment, %8.5Steam pressure at turbine, Mpa13.25Steam temperature at turbine, °C560	Core diameter, m	3	
Core outlet temperature, °C750Core inlet temperature, °C250Fuel enrichment, %8.5Steam pressure at turbine, Mpa13.25Steam temperature at turbine, °C560	Core height, m	11	
Core inlet temperature, °C250Fuel enrichment, %8.50Steam pressure at turbine, Mpa13.25Steam temperature at turbine, °C560	Primary helium pressure, MPa		
Fuel enrichment, %8.5Steam pressure at turbine, Mpa13.25Steam temperature at turbine, °C566	Core outlet temperature, °C		
Steam pressure at turbine, Mpa13.25Steam temperature at turbine, °C560	Core inlet temperature, °C		
Steam temperature at turbine, °C 560	Fuel enrichment, %	8.5	
1	Steam pressure at turbine, Mpa		
Efficiency, % 42	Steam temperature at turbine, °C		
	Efficiency, %		

Design Example 2: Pebble-bed type HTGRs

- Spherical graphite fuel element with coated particles fuel
- On-line / continuous fuel loading and circulation •
- Fuel loaded in cavity formed by graphite to form a pebble bed

0.5 millimeter

uranium dioxide


fuel kernel

Comparison of Main Characteristics among Some HTGR-type SMR Designs

	HTR-PM	GTHTR300	GT-MHR	HTMR100	Xe-100	SC-HTGR	$\mathbf{E}\mathbf{M}^2$
Country of Origin	China	Japan	Russian Federation	South Africa	USA	USA	USA
Design organization(s)	INET, Tsinghua University	JAEA	JSC "Afrikantov OKBM"	STL Nuclear (Pty) Ltd.	X-energy, LLC	Framatome Inc.	General Atomics
Reactor type	Modular pebble bed HTGR	Prismatic HTGR	Modular Helium Reactor	Pebble-bed HTGR	Modular HTGR	Prismatic HTGR	Modular high temperature gas-cooled fast reactor
Fuel materials	TRISO spherical elements with coated particle fuel	UO ₂ TRISO ceramic coated particle	Coated particle fuel in compacts, hexagonal prism graphite blocks	TRISO particles in pebbles; LEU/Th	UCO TRISO/pebbles	UCO TRISO particle fuel in hexagonal graphite blocks	UC pellet / hexagon
Coolant	Helium	Helium	Helium	Helium	Helium	Helium	Helium
Moderator	Graphite	Graphite	Graphite	Graphite	Graphite	Graphite	N/A
Thermal output, MW(t)	2 x 250	< 600	600	100	200	625	500
Electrical output, MW(e)	210	100 - 300	288	35	82.5	272	265
Core inlet temp., °C	250	587 - 633	490	250	260	325	550
Core outlet temp., °C	750	850 - 950	850	750	750	750	850
Enrichment, %	8.5	14	14-18% LEU or WPu	10%	15.5	14.5 (avg) 18.5 (max)	~14.5 (LEU)
Core Discharge Burnup (GWd/ton)	90	120	100-720 (depends on fuel type)	80 - 90	165	165	~130
Refuelling cycle, months	Online refuelling	48	25	Online fuel loading	Online fuel loading	¹ /2 core replaced every 18 months	360
Reactivity control	Control rods	Control rods	Control rods	Control rods in the reflector	Control rods	Control rods	Control rods
Reactor Vessel's height/diameter, (m)	25 / 5.7 (inner)	23 / 8	29 / 8.2	15.7 / 5.6	16.4 / 4.88	24 / 8.5	12.5 / 4.6
Design status	In operation	Basic design	Preliminary Design completed	Basic Design	Basic Design	Preliminary Design	Conceptual design

HTGR – Benefits

- SHOLY
 Non-electric applications
 Walk away safe
 Inert gas coolant
 High efficiency
 High Burnup possible
- Very different from first generation gas cooled graphite moderated reactors
 - Different fuel type (coated particle) retain radioactive material at 1600 °C
 - Different coolant (Helium) stable at high temperatures
 - (similar) Graphite core structure high thermal inertia

In case of vapor or air ingress accident, the surface of graphite oxidizes but safety of the core never be lost

passively and fuel temperature never exceeds 1600 °C.

In case of a loss of coolant accident, large heat capacity and high thermal conductivity of graphite absorbs heat.

Central brace

Outer Pyrolytic Carbor Silicon Carbide nner Pyrolytic Carbon

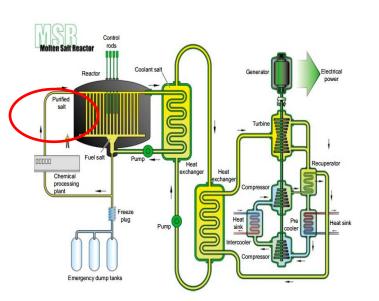
rous Carbon Buffe

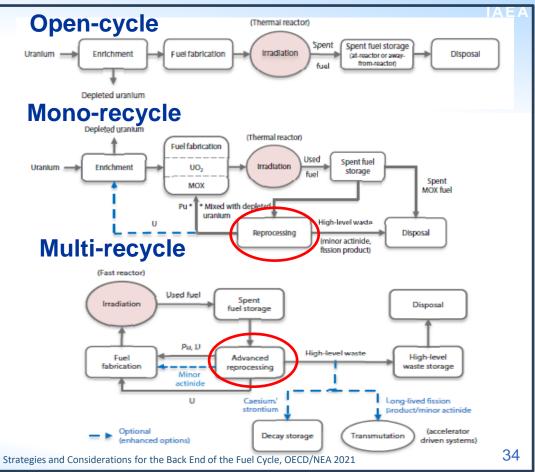
Fuel Kernel (UCO, UO-

HTGRs – Challenges

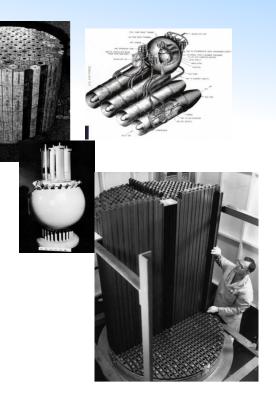
- The low power density leads to large reactor pressure vessels (but site requirements not larger)
 - Forging capability can also set limit on RPV diameter and power (e.g. Φ 6.7 m \rightarrow < 350 MWth in South Korea)
- Helium coolant has low density and thus requires high pressurization
- Helium coolant is non-condensable so a traditional containment cannot be used
- Coated particle fuel costs are expected to be higher
- Availability of licensing framework
- Supply Chain

Advances in Molten Salt Reactor development




IAEA/NENP/NPTDS/SMR/24June2024

Features/Incentives for MSR Development: Online reprocessing


On-line refuelling / reprocessing (multirecycling in a single facility)

On the History of MSRs

Some early experience:

- ORNL aircraft power plant 1953
- Aircraft reactor experiment (ARE) 1954
- Aircraft reactor test (ART) 1956
- Molten Salt Reactor Experiment MSRE (1965-1969)
 - 8 MWt
 - Single region core
 - Graphite moderated
 - Also used U-233 and mixed U/Pu salt fuel
 - On-line refueling
 - >13,000 full power hours

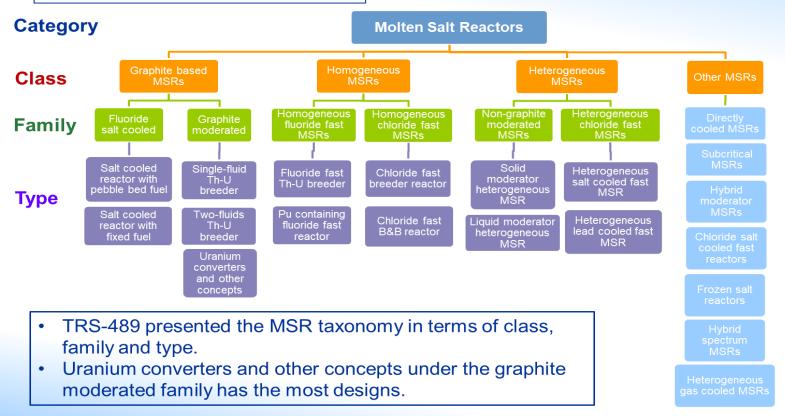
MSRE Experience

- Keeping salt molten was not difficult
- Moving salt among tanks was routine
- No salt leaks during operation (corrosion as expected)
- Adding enriching salt during operation was uneventful
- Static nuclear properties were accurately predicted
- Excellent dynamic stability with both ²³⁵U and ²³³U as predicted
- Reactivity change with time was as expected
- Heat transfer and hydraulic performance as predicted
- No pump maintenance required
- Stripping of noble gas fission products was effective
- Effective oxide stripping. Good UF₆ recovery

Power range of MSRs in the Category of SMRs

Molten Salt SMRs (Examples)

IAEA Publication on MSR Technology

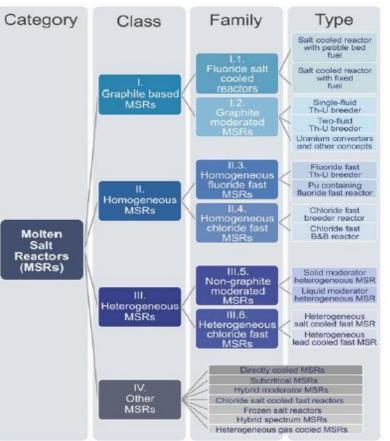


	Section 1: Introduction	Background, Objective, Scope, Structure
	Section 2: History of MSR technology	Development efforts of several member states on MSR technologies since the 1940s
TECHNICAL REPORTS SERIES NO. 489	Section 3: Advantages and technical challenges of MSR technology	 Potential safety and economic advantages of MSRs and technical challenges for deploying MSRs
Status of	Section 4: Classification of MSRs	 Taxonomy of MSRs based on the major reactor types and technological similarities: Classes, Families, Types
Molten Salt Reactor Technology	Section 5: Research and Development activities	 R&D activities in Member states with major programmes for MSR technology
2023	Section 6: Current challenges to deploying MSRs	 Non-technical challenges associated with the deployment MSRs and potential solutions to these challenges
	Section 7: Summary and conclusions	• Summary and main conclusions regarding the status of the MSR technology

220 pages

Taxonomy of Molten Salt Reactor

Courtesy of J. Křepel, Paul Scherrer Institute, Switzerland

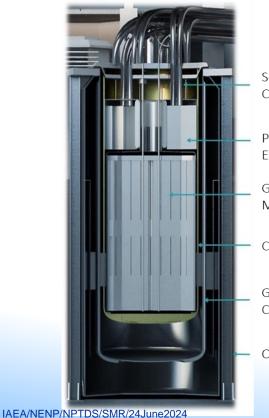

Advantages & Taxonomy

Near atmospheric operating pressure

No irradiation damage or mechanical failure of fuel

Strong negative reactivity temperature feedback.

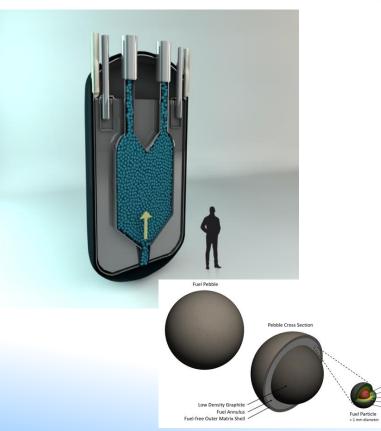
On-line removal of gaseous fission products.



AE

Courtesy of J. Křepel, Paul Scherrer Institute, Switzerland

Integral Molten Salt Reactor


(Terrestrial Energy Inc., Canada)

		Major Technical Decemptors		
		Major Technical Parameters		
		Reactor Type	Molten Salt Reactor	
-	Secondary Coolant Loop	Coolant / Moderator	Fluoride fuel salt/graphite	
_	Primary Heat Exchanger	Thermal / Electrical Capacity	440 MWt / 195 MWe	
_	Graphite Moderator	Operating Pressure (primary / Secondary)	< 0.4 (hydrostatic)	
_	Core-unit	Core Inlet/Outlet Coolant Temperature	620°C / 700°C	
_	Guard Vessel and Containment	Fuel Type	Molten salt fuel	
		Fuel enrichment	< 5% (LEU)	
	Operating Silo	Design Status	Conceptual Design complete, VDR with CNSC	
			10	

KP-FHR (Kairos Power, United States of America)

Major Technical Parameters

Reactor Type	Modular, pebble bed, high temp, salt-cooled reactor
Coolant / Moderator	Li ₂ BeF ₄ / graphite
Thermal / Electrical Capacity	320 MWt / 140 MWe
Operating Pressure (primary / Secondary)	< 0.2 (hydrostatic)
Core Inlet/Outlet Coolant Temperature	550°C / 650°C
Fuel Type	TRISO particles in graphite pebble matrix / pebble bed
Fuel enrichment	< 19.75% (LEU)
Design Status	Conceptual Design in progress

Emerging: Microreactors

- **Energy Well** >5 MMR Power range MW(e) -4 Westinghouse eVinci **U-Batterv** MoveluX AURORA . <2
- Several countries are developing
 Microreactors technology for potential
 deployment by 2030;
- *Typically* to generate from 1 to 10 MWe; designed for enhanced transportability to site by modularity;
- To supply power at remote sites with mining operations, island communities, oil platforms and maritime shipping.
- Deployment opportunities in remote areas in North America, Middle East, Africa, and the South-East Asian archipelagos.

Microreactors

Micro

Reactors

Microreactors (others, in organizations' website)

Microreactors

IAEA/NENP/NPTDS/SMR/24June2024

Factors in Microreactors Development

Rationales

- More specific nuclear portfolios beyond 'known' SMRs
- The need for energy resiliency
- Power needs in regions inaccessible by known power generators / plants
- Power needs in cities / techno parks

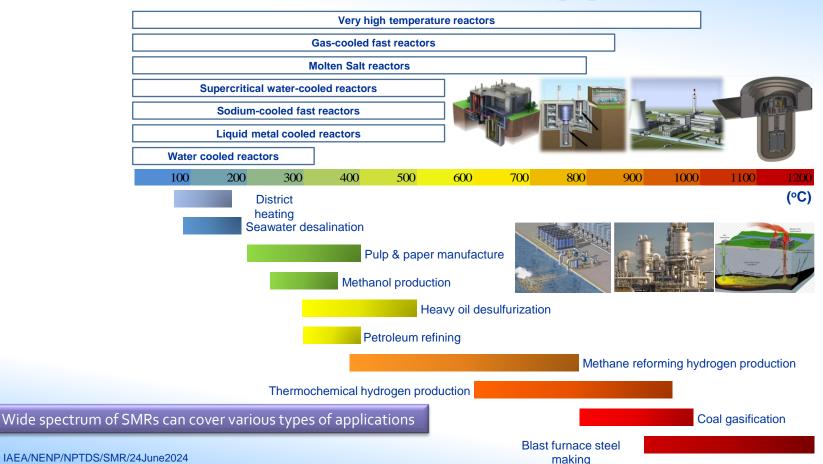
Pursued Advantages

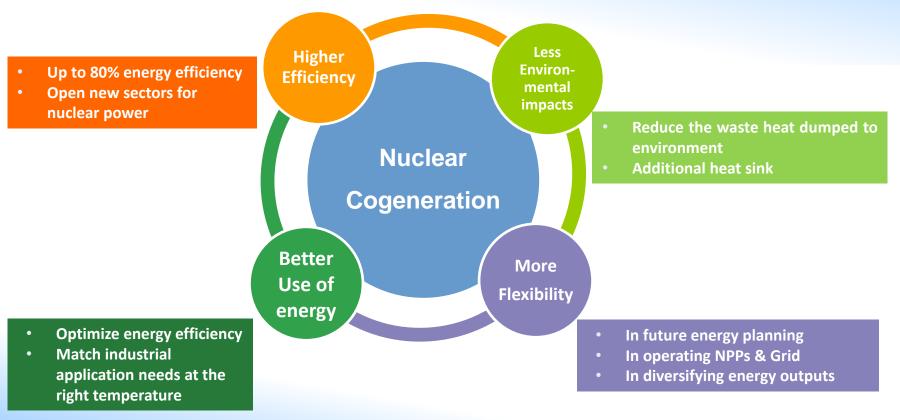
- New technologies with innovative inherent safety features
- Substantially lower capital cost
- Modularity, Mobility, more of "installation" than construction
- Long refueling interval or no refuel

Target Applications

- Microgrids for critical infrastructures
- Remote off-grid areas, minings
- Emergency power supply
- Wide spectrum non-electric apps
- Space and Naval applications (UUV)

Potential Issues and Key Challenges


- Safeguards: factory-sealed cores, new configs.
- Security: remote off grid areas, attractive theft target of new fuels / higher enrichment
- Strategies for waste treatment and disposal
- Operator requirements, oversights / inspections


Westinghouse's eVinci micro reactor schematic (Image: SMR Booklet edition 2020)

SMR for Non-Electric Applications

Values of Nuclear Cogeneration

Waste Management and Disposal Plan adopted by SMR Designs

Volume Reduction and Conditioning:

Coated particle separation from graphite will reduce volume by up to a factor of 100.

Waste Processing:

- Low and intermediate level waste from plant operation will be conditioned by different process technologies.

- Possible graphite recycling, ¹⁴C separation process
- Storage Approach, Spent Fuel Pool Cooling Mechanism:
 - With higher thermal efficiencies the radiotoxicity and decay heat will be lessened by 50% for HTGRs as compared to LWRs.
 - Dry storage with natural convection after short material active cooling.
 - Facilities for long-term storage of spent fuel and solid radwaste are in the NPP complex
- Spent Fuel Take-back Option: to date not considered in HTGRs.

Potential Challenges on Safeguards on SMRs

Reference: Jeremy Whitlock, SH-CA, SGCP, 2 November 2021

- New fuels and fuel cycles: pebble-bed, molten salt, Th/U-233, MOX, transuranic (TRU) fuels, fast reactors, higher enrichment (HALEU), pyroprocessing, other new processes
- Longer operation cycles: continuity of knowledge between refuelling, high excess reactivity of core (target accommodation)
- New supply arrangements: factory sealed cores, transportable power plants, transnational arrangements
- **Spent fuel management:** storage configurations, waste forms
- **Diverse operational roles:** district heating, desalination, hydrogen + electricity
- **Remote, distributed locations:** access issues, accessibility of nuclear material for verification, cost-benefit issues

IAEA independent verification capabilities must be ready

Challenges facing Successful Deployment of novel SMR designs

- Demonstration of Safety and Operating Performance
- Secure Deployment: physical, cyber, transport security
- Implementation of Safeguards
- Demonstration of Economic Competitiveness
 - Economies of Serial Construction with robust Supply Chain
- Harmonization of Licensing Framework for global deployment
- Establishment of Legal Framework

Advantages, Issues & Challenges

Technology aspects

- Shorter construction period (modularization)
- Potential for enhanced safety and reliability
- Design simplicity
- Suitability for non-electric application (desalination, etc.).
- Replacement for aging fossil plants, reducing GHG emissions

Non-Techno aspects

- Fitness for smaller electricity grids
- Options to match demand growth by incremental capacity increase
- Site flexibility
- Reduced emergency planning zone
- Lower upfront capital cost (better affordability)
- Easier financing scheme

Technology issues

- Licensing of FOAK designs, particularly non-LWR technologies
- Prove of operability and maintainability
- Staffing for multi-module plant;
- Supply chain for multi-modules
- Optimum plant/module size
- Advanced R&D needs

Non-technology issues

- Time from design-to-deployment
- Highly competitive budget source for design development
- Economic competitiveness: affordability & generation cost
- Availability of *off-the-shelf* design for newcomers
- Operating scheme in an integration with renewables

Prospects and Actions for Deployments

Demonstration of Safety and Operational Performance of FOAK, Novel Designs & Technologies Continuity of Orders, cost competitiveness against alternatives, robust supply chain, and viable financing Option

SMR Deployment Competitiveness

Regulatory framework, licensing pathways: global deployment, need of harmonization?

Development of Nuclear Infrastructure for near-term deployment particularly in Embarking countries

Status and Prospect of Deployment (2020 – 2030s)

TWG-SMR Second Term 2022-2025

Members of TWG-SMR 2018-2021

Members of TWG-SMR 2022-2025

Functions of the TWG – New ToR

- To provide advice to DDG-NE on specific topics of relevance to the IAEA's programmatic activities on SMR;
- To share information and knowledge on national and international programmes on SMR;
- To contribute to the development and/or review of selected IAEA publications, in particular from the IAEA NE Series, assess existing gaps and advise on the preparation of new publications or e-learning materials;
- Upon request, to present to the Standing Advisory Group on Nuclear Energy (SAGNE) the key findings of the TWG meeting; and
- To share experience and advice on increasing the participation of young professionals and improving the gender balance in the nuclear sector

Recommendations from TWG-SMR 2022-2025 term

Key recommendations from the 20 members of TWG-SMR

- Addressing standardization on requirements and specifications
- Facilitate suppliers to ensure the supply chain for SMRs in the near term
- Programs to share test facilities for design validation and verification purposes
- Update/improve the NE Series on Technology Roadmap for SMR Deployment
- Develop risk matrix of SMRs technology
- Provide economics indexes compare to present NPPs and other generation sources
- Economic analysis and development of Financing Tools
- Review past studies on non-electrical applications. Organizing issues to be considered in safety point of views
- Approach to evaluate technology readiness level of SMRs
- Safety standards for SMRs and Gen-4 reactors
- ... and so forth ...

Formulation of 3 Topical Groups in TWG-SMR

Topical Group-1: SMR Technology Roadmap

- ✓ Revision of the NE Series No. NR-T.1.18 on Technology Roadmap for SMR Deployment (2021) for 2025 edition
- ✓ Good practices and approaches to evaluate technology readiness level of advanced reactors and SMRs

Topical Group-2:

R&D, Codes & Standards and Operation Preparation

✓ Research & Development of Innovative Designs; Codes & Standards for Design and Construction; and Approach and Preparation for Demonstration Operation of SMRs

Topical Group-3:

SMR Technology Deployment for Cogeneration

 SMR Technology Deployment for Cogeneration and Interaction with end-users of various applications of SMRs

Key IAEA Activities on SMRs

Technology Development and Deployment TWG-SMR/GCR **ARIS** Database - SMR Booklet Safety & Security Applicability of Safety **Reactor Technology Assessment** Updated Method incorporates SMR Response Fuel, Safe management of **Spent Fuel, Radioactive Standardization Initiative** Waste and Decommissioning Industry Track

Approaches to Commissioning and Operation

- Issues on the conduct of operation, OLC and MCR for multi-unit plant

Economics

- Economic Appraisal of SMR Projects: Methodologies and **Applications**

Legal Frameworks for safety, security, safeguards and civil liability for nuclear damage

- Standards and Security Guides
- **Emergency Preparedness and**

Nuclear Harmonization and

Regulatory Track

Safeguards-by-Design

- Facilitation of safeguards inspection early in reactor design stage

Infrastructure Development

- **IAEA Milestones Approach** applicable to SMR
- New deployment models

SMR Platform

- Provides coordinated support from across the entire Agency on the development, early deployment, and oversight of SMRs
- SMR Portal smr.iaea.org provides latest news, IAEA events, and publications on SMRs
 The Platform on Small Modular Reactors and their Applications

Enquiries and requests for assistance: <u>SMR.Platform@iaea.org</u>

Assistance to address MS requests

- Expert mission to review prefeasibility study reports on desalination for Jordan
- Training on Reactor Technology Assessment
- Ongoing delivery of support to address requests from Member States and other stakeholders
 - Brazil, India, Poland, Venezuela
 - World Association of Nuclear Operators

8 December 1953

1 to 23 October 1957

11 December 1957

1959

10 December 2005

1958 to 1979

Thank you for your attention!

For inquiries, please contact: Small Modular Reactor Technology Development Team IAEA Division of Nuclear Power, Nuclear Power Technology Development Section E-mail: SMR@iaea.org

23 August 1979 Atoms for peace and Development...